Supplementary material 1. Evolution of CSF production hypothesis from classical unidirectional flow to the Bulat-Klarica-Orešković hypothesis

Author	Study Type	Main Finding
Weed (1914)	In vivo study w/	The majority of CSF is returned to the circulation via arachnoid
` ,	dogs, cats, and	villi with accessory drainage of CSF into lymphatic.
	monkeys	
Dandy (1919)	In vivo study w/	CSF is formed from the CP, and the ependyma does not secrete
, ,	dog (n=1)	CSF.
Cushing (1925)	Lecture	Unidirectional CSF flow was described as the "third circulation".
	summarizing pre-	
	1920 findings	
Milhorat (1969)	In vivo study w/	Hydrocephalus occurred in monkeys with ventricular obstruction
	rhesus monkeys	even when the CP was removed. Furthermore, CSF composition
	(n=149)	after CP removal was unchanged.
Milhorat, et al.	In vivo study w/	Choroid plexectomy reduced the production of CSF by an
(1971)	rhesus monkeys	average of 33-40%. Therefore, the CP is not the sole source of
	(n=17)	CSF production.
DiMattio, et al.	In vivo study w/	Decreasing white and grey matter water content coincided with
(1975)	cats (n=17)	decreases in ventricular bulk flow when concentrated glucose was
		infused into the blood stream.
Wald, et al. (1976)	In vivo study w/	Increased bulk flow induced through hypertonic solution
	cats (n=60)	perfusion originates from the CP.
Wald, et al. (1977)	In vivo study w/	Decreasing serum osmolarity resulted in CSF volume flow
	cats (n=16)	increasing and tracers initially in the white matter to appear in the
		ventricular system.
Upton, et al. (1985)	Human brain	Erythrocytes were found in arachnoid granulations after
	microscopy (n=23)	subarachnoid hemorrhage suggesting the AG are connected to the
		SAS and are CSF drainage pathways.
Pople, et al. (1995)	Retrospective	CP coagulation is not effective for treating hydrocephalus as 65%
	review of human	of patients required a catheter for long-term hydrocephalus
	patients (n=104)	control. Ventricular size was not impacted.
Kapoor, et al. (2008)	Review paper	Multiple pathways and methods of CSF drainage were reviewed.
Bulat, et al. (2008)	In vivo study w/	CSF volume does not flow unidirectionally along CSF spaces,
	cats (n=4)	instead water (99% of CSF volume) is absorbed transventricallly
Y (2000)	*	into periventricular capillaries.
Klarica, <i>et al</i> (2009)	In vivo study w/	Blockage of aqueduct of Sylvius does not increase CSF pressure
3.6 1 1/ 1	cats (n=10)	or induce ventricular dilation.
Maraković, <i>et al</i> .	In vivo study w/	Perfusion of CSF with hyperosmolar CSF leads to higher outflow
(2010)	cats (n=12)	volume during ventriculo-cisternal perfusion compared to
Maralraviá at al	In vivo atudo vo/	perfusion with iso-osmolar CSF.
Maraković, <i>et al</i> .	In vivo study w/	Application of distilled water increases CSF outflow volume and
(2012)	cats (n=4)	CSF pressure.
Klarica, et al. (2013)	In vivo study w/	Sub-chronic application of hyperosmolar solution to ventricles
	cats (n=6) and dogs (n=23)	results in hydrocephalus development without any obstruction of CSF pathways.
Yamada (2014)	Human imaging:	CSF was found to exhibit pulsatile movement, but no CSF
1 amada (2014)	time-SLIP MRI	circulation from site of production to site of drainage.
Matsumae, et al.	Human Imaging:	Velocity field from 3D-PC MRI was converted to pressure
(2014)	3D-PC MRI (n=13)	gradient. CSF motion was stagnant at the CP yielding a minimal
(2014)	2D-1 C MIKI (II-13)	pressure gradient suggesting the CP is not a pump.
Orešković, et al.	Review paper	The Bulat-Klarica-Orešković hypothesis posits that CSF
(2017)	Keview papei	exchange is present everywhere in the CSF system and is a
(2017)		consequence of water filtration between capillaries and ISF.
	L	consequence of water mitation between capillaties and IST.